

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 2031-2034

www.elsevier.com/locate/jeurceramsoc

Microwave dielectric properties of LiNb₃O₈ ceramics with TiO₂ additions

S.O. Yoon^{a,*}, J.H. Yoon^a, K.S. Kim^a, S.H. Shim^b, Y.K. Pyeon^c

^a Department of Ceramic Engineering, Kangnung National University, Gangnung 210-702, South Korea

^b Department of Ceramic Engineering, Samcheok National University, Samcheok 245-711, South Korea

^c Department of Information and Communication, Gangwon Provincial University, Gangnung 210-804, South Korea

Available online 2 December 2005

Abstract

The microwave dielectric properties of LiNb₃O₈ ceramics were investigated as a function of the sintering temperature and the amount of TiO₂ additive. LiNb₃O₈ ceramics, which were calcined at 750 °C and sintered at 1075 °C for 2 h, showed a dielectric constant (ε_r) of 34, a quality factor ($Q \times f_0$) of 58,000 GHz and a temperature coefficient of resonance frequency (τ_f) of -96 ppm/°C, respectively. The density of the samples influenced the properties of these properties. As the TiO₂ content increased in the LiNb₃O₈–TiO₂ system, ε_r and τ_f of the material were increased due to the mixing effect of TiO₂ phase, which has higher dielectric constant and larger positive τ_f . The 0.65LiNb₃O₈–0.35TiO₂ ceramics showed a dielectric constant ε_r of 46.2, a quality factor ($Q \times f_0$) of 5800 GHz and a temperature coefficient of resonance frequency τ_f of near to 0 ppm/°C. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Microwave dielectrics; Dielectric properties; TiO2

1. Introduction

The microwave dielectric materials for applications in wireless communication systems such as cellular phones, broadcasting satellites and global positioning systems have been widely studied in the past decade.^{1,2} These materials in the range of microwave frequency require a high dielectric constant (ε_r), a high quality factor $(Q \times f_0)$ and a small temperature coefficient of resonance frequency (τ_f) . The recent studies have concentrated on the development of low temperature-cofired ceramics (LTCC) with high conductive internal electrode materials such as silver, copper and their alloys, because of the fabrication of a small resonator within the multilayered integrated circuit.^{3,4} Most of the commercial dielectric materials have a high sintering temperature over 1300 °C. To reduce sintering temperature, sintering additives having low-melting points have been generally used in the LTCC systems.^{5,6} However, the addition of sintering additives results in an abrupt degrading of the dielectric properties due to the formation of secondary phases. Several dielectric compounds including Nb₂O₅ and their solid solution have been investigated and the niobate-based materials are tested for microwave dielectrics due to their lower sintering temperature and high quality factors. 7-9

0955-2219/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.028 The purpose of this work is to examine new niobate dielectric materials combined with lithium oxide that have good microwave dielectric properties and a lower sintering temperature. In order to improve their dielectric constant and temperature coefficient of resonance frequency τ_f , the compound is combined with TiO₂ that has a dielectric constant of 104 and a high positive τ_f of +450 ppm/°C.¹⁰ The microwave dielectric properties of LiNb₃O₈–TiO₂ ceramics have been investigated by varying sintering temperatures and the amount of TiO₂.

2. Experimental procedure

LiNb₃O₈ compounds were synthesized by the conventional mixed solid oxide method. High purity (99.9%) oxide powders of Li₂CO₃ and Nb₂O₅ were used as the starting materials. The powders were weighed and milled with ZrO₂ balls for 12 h in ethanol. The mixed powders were dried and calcined from 650 to 900 °C at rate of 10 °C/min for 2 h, respectively. The calcined powders were mixed with TiO₂ (0.25 to 0.45 mol) in ethanol for 12 h and then dried. These powders were pressed by uniaxial press into pellets of 15 mm diameter and 10 mm thickness under 1000 kg/cm² pressure. The pellets were finally sintered from 1025 to 1175 °C at a rate of 10 °C/min for 2 h under air atmosphere.

^{*} Corresponding author.

The crystalline phases of calcined powders and sintered specimens were analyzed by X-ray powder diffraction (XRD) method (MO3XHF, MAC Science, Japan) for 2θ in the range 10° to 80° . The microstructure of the specimens was observed using a scanning electron microscope (LEO420, Cambridge, UK) and the sintered density of the samples was measured by the Archimedes method. The microwave dielectric properties of specimens were measured by the Hakki–Coleman dielectric resonator method with the TE₀₁₁ mode.¹¹ The τ_f of the samples was obtained by the cavity method in the temperature range from 25 to $85 \,^{\circ}C.^{12}$

3. Results and discussion

From the XRD analysis of calcined powders showed that a single phase LiNb₃O₈ compound is formed by heat treatment above 700 °C. However, as the calcination temperature increased, the particle size of the calcined powder increased due to the aggregation of particles. The density of LiNb₃O₈ ceramics as a function of sintering temperature is shown in Fig. 1. The density increased as the sintering temperature increased up to 1075 °C. The density is decreased slightly above 1100 °C. The density of the specimen sintered at 1075 °C using powder calcined at 75 °C showed the maximum value of 4.84 g/cm³.

Fig. 2 shows the SEM micrographs of LiNb₃O₈ ceramics with various sintering temperatures. The grain size of specimens increases with increasing sintering temperature, but large pores were observed in the specimens sintered above $1125 \,^{\circ}$ C. The large pores may be related to the volatility of lithium ions during the sintering process. The measurements of weight loss during sintering of the specimens showed no change in weight up to $1075 \,^{\circ}$ C, but showed a weight loss of about 0.29 wt.% at $1175 \,^{\circ}$ C. Also, we confirmed that lithium vacancy as a result of its volatility, yields a large abnormal grain growth and changed the grain orientation from the (410) to the (400) plane. From the Fig. 1, as the calcination temperature increased, the apparent density of LiNb₃O₈ ceramics increased up to 800 $^{\circ}$ C and then decreased at 900 $^{\circ}$ C. Thus, it could be considered that the unre-

Fig. 1. XRD patterns of $Ca(Li_{1/4}Nb_{3/4})O_3$ calcined specimens with various temperature.

Fig. 2. Dielectric constant and quality factor of $Ca(Li_{1/4}Nb_{3/4})O_3$ ceramics as a function of sintering temperature.

acted material and aggregation powder prevented the grain size increasing.

XRD patterns of LiNb₃O₈ ceramics with various sintering temperatures are shown in Fig. 3. The peaks of the (200) and (400) planes were increased with increasing sintering temperature.

Fig. 4 shows microwave dielectric properties of LiNb₃O₈ ceramics with various calcination temperature as a function of sintering temperature. As the sintering temperatures increased, the dielectric constant increased up to $1075 \,^{\circ}$ C and then decreased slightly, and the quality factors increased up to

Fig. 3. XRD patterns of $Ca(Li_{1/4}Nb_{3/4})O_3$ specimens with various sintering temperature.

Fig. 4. Lattice parameters of $(1 - x)Ca(Li_{1/4}Nb_{3/4})O_3-xCaTiO_3$ system as a function of x mol.

1100 °C and then decreased. These results are very similar to the changes of apparent densities with varying calcination and sintering temperatures. As shown in Fig. 4, the LiNb₃O₈ ceramics, which were calcined at 750 °C and sintered at 1075 °C for 2 h, showed a ε_r of 34, a quality factor ($Q \times f_0$) of 58,000 GHZ and a τ_f of -96ppm/°C. In order to improve the dielectric properties of LiNb₃O₈ ceramics to make a good candidate for microwave dielectrics, it is essential to improve the τ_f through the addition of TiO₂ that has a high positive τ_f and a high dielectric constant.¹¹

X-ray diffraction patterns of (1 - x)LiNb₃O₈-*x*TiO₂ ceramics sintered at 1100 °C for 2 h with various TiO₂ concentrations as shown in Fig. 5. XRD patterns could be indexed as two phase mixtures that are composed of the main LiNb₃O₈ compound and the added TiO₂ compound. With the increase of the TiO₂ concentration in the range of 0.25–0.45 mol, the peak intensity for TiO₂ compound increased steadily. However, the peak positions according to LiNb₃O₈ were constant due to the absence of solid solutions.

Fig. 5 shows microwave dielectric properties of (1 - x)LiNb₃O₈-*x*TiO₂ ceramics sintered at 1100 °C for 2 h as a function of x concentration. As the TiO₂ concentration increase from 0.25 to 0.45 mol, the dielectric constant and temperature coefficient of resonance frequency τ_f increased from 40.5 to 55.8 and from -52 to 43 ppm/°C, respectively. This can be explained by the logarithmic mixing rule of properties in mixture ceramics between LiNb₃O₈ having a dielectric constant of 34, a τ_f of $-96 \text{ ppm/}^{\circ}\text{C}$ and by TiO₂ having a dielectric constant of 104 and a τ_f of +450 ppm/°C. These results are well agreed with the results related to rutile and its compounds by Haga K. et al.¹⁰ However, the quality factor $(Q \times f_0)$ values decrease with an increasing TiO2 concentration. This could be considered due to the fact that the phase boundary in mixture ceramics was affected by an increase of interface loss resulting from the generation of anharmonic vibration that decreases the quality factor.¹³

Fig. 5. Dielectric constant, quality factor and TCF of $(1 - x)Ca(Li_{1/4}Nb_{3/4})O_3 - xCaTiO_3$ system as a function of x mol.

In conclusion, 0.65LiNb₃O₈–0.35TiO₂ ceramics sintered at 110 °C have good microwave dielectric properties with a dielectric constant of 46.2, quality factor ($Q \times f_0$) values of 5800 GHz and a τ_f of near to 0 ppm/°C.

4. Conclusion

LiNb₃O₈ ceramics, which were calcined at 750 °C and sintered at 1075 °C for 2 h, showed a ε_r of 34, a $Q \times f_0$ of 58,000 GHz and a τ_f of -96 ppm/°C. These properties were influenced by changes in sintered densities due to the calcination temperature and lithium evaporation.

As the TiO₂ content increases in LiNb₃O₈–TiO₂ systems, the dielectric constant and τ_f increased due to the mixing effect of the TiO₂ phase. The ε_r of 46.2, a quality factor of 5800 GHz and a τ_f of near 0 ppm/°C were obtained for the 0.65LiNb₃O₈–0.35TiO₂ ceramics sintered at 1100 °C.

References

- 1. Wakino, K., Nishikawa, T., Ishikawa, T. and Tamura, H., Br. Ceram. Trans. J., 1990, **89**, 39-43.
- Wersing, W., In *Electronic Ceramics*, ed. B. C. H. Steels. Elsevier Appl. Sci., London, UK, 1991, pp. 67–119.
- 3. Setter, N. V. and Wasser, K., Acta. Mater., 2000, 48, 151-178.
- Ishozaki, S. T., Fujita, M., Kataga, H., Uwano, T. and Miyake, H., *IEEE Trans. Microwave Theory Tech.*, 1994, 42, 2017–2021.
- Kagata, H., Inoue, T., Kato, J. and Kameyama, I., Jpn. J. Appl. Phys., 1992, 31, 3152–3155.
- Yoon, K. H., Park, M. S., Cho, J. Y. and Kim, E. S., J. Eur. Ceram. Soc., 2003, 23, 2423–2427.

- 7. Ling, H. C., Yan, M. F. and Rhodes, W. W., J. Mater. Res., 1990, 5, 1752–1762.
- 8. Lee, H. R., Yoon, K. H. and Kim, E. S., Jpn. J. Appl. Phys., 2003, 42, 6168–6171.
- Lee, H. R., Yoon, K. H., Kim, E. S., Cho, Y. S., Yoon, S. O. and Kim, T. H., J. Jpn. Ceram. Soc., 2004, 112, 1579–1582.
- Haga, K., Ishii, T., Mashiuyama, J. and Ikeda, T., Jpn. J. Appl. Phys., 1992, 31, 3156–3159.
- 11. Hakki, B. W. and Coleman, P. D., *IRE Trans. Microwave Theory Tech.*, 1960, **8**, 402–410.
- 12. Kobayashi, Y., IEEE Trans. Microwave Theory Tech., 1985, 33, 586-592.
- 13. Takata, M. and Kageyama, K., J. Am. Ceram. Soc., 1989, 72, 1955-1959.